IFLST 6 Ordered sets

6.1 Draw Hasse diagrams for the following partial orders and show their minimal (maximal, the least, the greatest) elements. Show an example of a maximal chain and a maximal antichain.
a) \mid (the divisibility) in the set $\left\{p \in \mathbb{N}_{+}: p \mid 96\right\}$,
b) \leqslant in the set $\{0,1,2,3\}^{2}$, where

$$
\begin{equation*}
\left(x_{1}, y_{1}\right) \leqslant\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1} \leqslant x_{2} \wedge y_{1} \leqslant y_{2} \tag{1}
\end{equation*}
$$

c) \subseteq in the family $\left\{D\left(A_{i}, r_{i}\right): i=0,1, \ldots, n\right\}$ of open plane discs $\left(A_{i}\right.$ is a center and r_{i} is a radius of $D\left(A_{i}, r_{i}\right)$ where $A_{i}=(i, i), r_{i}=2 \sqrt{2}$ for even i and $r_{i}=\sqrt{2}$ for odd i,
d) \preceq in the set of all sequences of length 3 with elements of the set $\{0,1,2\}$ where

$$
a_{1} b_{1} c_{1} \preceq a_{2} b_{2} c_{2} \Leftrightarrow a_{1} \leqslant a_{2} \wedge b_{1} \leqslant b_{2} \wedge c_{1} \leqslant c_{2}
$$

6.2 Let P and Q be ordered sets and let \leqslant be an order in $P \times Q$ defined as in 6.1b).
a) Draw a Hasse diagram of the set $X \times Y$ where $X=\{a, b, c\},=\{x, y, z\}$ and $ac, x>y<z$,
b) What is the relation between minimal (maximal) elements in $P \times Q$ and minimal (maximal) elements in P and in Q ?
6.3 For $x, y \in \mathbb{N} x \preceq y$ iff $x=y \vee 2 x \leqslant y$. Prove that \preceq is a partial order. Draw the Hasse diagram for $(\{1, . ., 9\}, \preceq)$.
6.4 For $x, y \in \mathbb{N} x \preceq y$ iff $x=y \vee x^{2} \leqslant y$. Prove that \preceq is a partial order. Draw the Hasse diagram for $(\{1, . ., 9\}, \preceq)$.
6.5 For $x, y, z, t \in \mathbb{N}(x, y) \preceq(z, t)$ iff $x \leqslant z \wedge x \cdot y \leqslant z \cdot t$. Prove that \preceq is a partial order. Draw the Hasse diagram for $(\{(x, y): x, y \in\{1,2,3\}\}, \preceq)$. Find the smallest, largest, all minimal, all maximal elements. Give an example of a maximal chain and antichain in $(\{(x, y): x, y \in\{1,2,3\}\}, \preceq)$.
6.6 Find $\sup (x, y)$ and $\inf (x, y)$ (if they exist) for each $x, y \in P$ in the following ordered sets:

6.7 Let $P=\left\{2 n: n \in \mathbb{N}_{+}\right\} \cup\{3\}$ and let \mid be the divisibility relation. Find all maximal and all minimal elements in the poset (P, \mid).
6.8 Is it true that in a finite poset the only maximal element is the largest element (the only minimal element is the least element)?
6.9 Prove that if each two element subset of an ordered set has a least upper bound (a greatest lower bound) then every nonempty finite subset has a least upper bound (the greatest lower bound).
6.10 For an ordered set P and its subset P let X^{*}, X_{*} stand for sets $\{p \in P:(\forall x \in X) x \leqslant p\}$ and $\{p \in P:(\forall x \in X) p \leqslant x\}$, respectively.
Find X^{*} and X_{*} where
(i) $P=\mathbf{N}, x \preceq y \Leftrightarrow x \mid y, X=\{12,16,24\}$,
(ii) $P=\mathcal{P}(A)$ ordered by $\subseteq, X=\{B, C, D\}$, where $B, C, D \subseteq A$,
6.11 Find \emptyset^{*} and \emptyset_{*},
6.12 When $\sup \emptyset($ respectively $\inf \emptyset)$ exists in a given ordered set?
6.13 Let $X \subseteq Y \subseteq P$. What are the inclusions between X^{*}, X_{*} and Y^{*}, Y_{*} ?
6.14 What are the inclusions between P and $\left(X^{*}\right)_{*},\left(X_{*}\right)^{*}$? .
6.15* For an ordered set P let $A(P)$ stand for a family of all antichains in P. Consider a binary relation \preceq in that family

$$
X \preceq Y \Leftrightarrow(\forall x \in X)(\exists y \in Y) x \leqslant y .
$$

Prove that \preceq partially orders $A(P)$.

